Saltearse al contenido

Ángulos Notables

Aˊngulo ()Aˊngulo (rad)sincostancotseccsc00010±1±15π126246+24232+3626+230π61232333233245π42222112260π332123332233755π126+246242+3236+26290π210±0±11057π126+24624232+362621202π3321233322331353π4222211221505π61232333233216511π126246+242+3236+26+2180π010±1±19513π126246+24232+36+2622107π6123233323322255π4222211222404π33212333223325517π126+246242+323626+22703π210±0±128519π126+24624232+36+26+23005π3321233322333157π42222112233011π61232333233234523π126246+242+32362623602π010±1±\def\arraystretch{1.5} \begin{array}{c:c:c:c:c:c:c:c} \text{Ángulo ($^\circ$)} & \text{Ángulo (rad)} & \sin & \cos & \tan & \cot & \sec & \csc \\ \hline 0^\circ & 0 & 0 & 1 & 0 & \pm \infty & 1 & \pm \infty \\ \hdashline 15^\circ & \frac{\pi}{12} & \frac{\sqrt{6} - \sqrt{2}}{4} & \frac{\sqrt{6} + \sqrt{2}}{4} & 2 - \sqrt{3} & 2 + \sqrt{3} & \sqrt{6} - \sqrt{2} & \sqrt{6} + \sqrt{2} \\ \hdashline 30^\circ & \frac{\pi}{6} & \frac{1}{2} & \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{3} & \sqrt{3} & \frac{2\sqrt{3}}{3} & 2 \\ \hdashline 45^\circ & \frac{\pi}{4} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 1 & 1 & \sqrt{2} & \sqrt{2} \\ \hdashline 60^\circ & \frac{\pi}{3} & \frac{\sqrt{3}}{2} & \frac{1}{2} & \sqrt{3} & \frac{\sqrt{3}}{3} & 2 & \frac{2\sqrt{3}}{3} \\ \hdashline 75^\circ & \frac{5\pi}{12} & \frac{\sqrt{6} + \sqrt{2}}{4} & \frac{\sqrt{6} - \sqrt{2}}{4} & 2 + \sqrt{3} & 2 - \sqrt{3} & \sqrt{6} + \sqrt{2} & \sqrt{6} - \sqrt{2} \\ \hdashline 90^\circ & \frac{\pi}{2} & 1 & 0 & \pm \infty & 0 & \pm \infty & 1 \\ \hdashline 105^\circ & \frac{7\pi}{12} & \frac{\sqrt{6} + \sqrt{2}}{4} & -\frac{\sqrt{6} - \sqrt{2}}{4} & -2 - \sqrt{3} & -2 + \sqrt{3} & -\sqrt{6} - \sqrt{2} & \sqrt{6} - \sqrt{2} \\ \hdashline 120^\circ & \frac{2\pi}{3} & \frac{\sqrt{3}}{2} & -\frac{1}{2} & -\sqrt{3} & -\frac{\sqrt{3}}{3} & -2 & \frac{2\sqrt{3}}{3} \\ \hdashline 135^\circ & \frac{3\pi}{4} & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & -1 & -1 & -\sqrt{2} & \sqrt{2} \\ \hdashline 150^\circ & \frac{5\pi}{6} & \frac{1}{2} & -\frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{3} & -\sqrt{3} & -\frac{2\sqrt{3}}{3} & 2 \\ \hdashline 165^\circ & \frac{11\pi}{12} & \frac{\sqrt{6} - \sqrt{2}}{4} & -\frac{\sqrt{6} + \sqrt{2}}{4} & -2 + \sqrt{3} & -2 - \sqrt{3} & -\sqrt{6} + \sqrt{2} & \sqrt{6} + \sqrt{2} \\ \hdashline 180^\circ & \pi & 0 & -1 & 0 & \pm \infty & -1 & \pm \infty \\ \hdashline 195^\circ & \frac{13\pi}{12} & -\frac{\sqrt{6} - \sqrt{2}}{4} & -\frac{\sqrt{6} + \sqrt{2}}{4} & 2 - \sqrt{3} & 2 + \sqrt{3} & -\sqrt{6} + \sqrt{2} & -\sqrt{6} - \sqrt{2} \\ \hdashline 210^\circ & \frac{7\pi}{6} & -\frac{1}{2} & -\frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{3} & \sqrt{3} & -\frac{2\sqrt{3}}{3} & -2 \\ \hdashline 225^\circ & \frac{5\pi}{4} & -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 1 & 1 & -\sqrt{2} & -\sqrt{2} \\ \hdashline 240^\circ & \frac{4\pi}{3} & -\frac{\sqrt{3}}{2} & -\frac{1}{2} & \sqrt{3} & \frac{\sqrt{3}}{3} & -2 & -\frac{2\sqrt{3}}{3} \\ \hdashline 255^\circ & \frac{17\pi}{12} & -\frac{\sqrt{6} + \sqrt{2}}{4} & -\frac{\sqrt{6} - \sqrt{2}}{4} & 2 + \sqrt{3} & 2 - \sqrt{3} & -\sqrt{6} - \sqrt{2} & -\sqrt{6} + \sqrt{2} \\ \hdashline 270^\circ & \frac{3\pi}{2} & -1 & 0 & \pm \infty & 0 & \pm \infty & -1 \\ \hdashline 285^\circ & \frac{19\pi}{12} & -\frac{\sqrt{6} + \sqrt{2}}{4} & \frac{\sqrt{6} - \sqrt{2}}{4} & -2 - \sqrt{3} & -2 + \sqrt{3} & \sqrt{6} + \sqrt{2} & -\sqrt{6} + \sqrt{2} \\ \hdashline 300^\circ & \frac{5\pi}{3} & -\frac{\sqrt{3}}{2} & \frac{1}{2} & -\sqrt{3} & -\frac{\sqrt{3}}{3} & 2 & -\frac{2\sqrt{3}}{3} \\ \hdashline 315^\circ & \frac{7\pi}{4} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & -1 & -1 & \sqrt{2} & -\sqrt{2} \\ \hdashline 330^\circ & \frac{11\pi}{6} & -\frac{1}{2} & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{3} & -\sqrt{3} & \frac{2\sqrt{3}}{3} & -2 \\ \hdashline 345^\circ & \frac{23\pi}{12} & -\frac{\sqrt{6} - \sqrt{2}}{4} & \frac{\sqrt{6} + \sqrt{2}}{4} & -2 + \sqrt{3} & -2 - \sqrt{3} & \sqrt{6} - \sqrt{2} & -\sqrt{6} - \sqrt{2} \\ \hdashline 360^\circ & 2\pi & 0 & 1 & 0 & \pm \infty & 1 & \pm \infty \\ \end{array}