Saltearse al contenido

Funciones Trigonométricas Inversas

Notaciones equivalentes:

sin1x=arcsinx=aˊngsinx\sin^{-1} x = \arcsin x = \text{áng} \sin x cos1x=arccosx=aˊngcosx\cos^{-1} x = \arccos x = \text{áng} \cos x tan1x=arctanx=aˊngtanx\tan^{-1} x = \arctan x = \text{áng} \tan x cot1x=arccotx=aˊngcotx\cot^{-1} x = \text{arccot} x = \text{áng} \cot x

Definición fundamental:

FunciónEquivalente aDominioRango (Valor Principal)
y=arcsinxy = \arcsin xx=sinyx = \sin y1x1-1 \leq x \leq 1π2yπ2-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}
y=arccosxy = \arccos xx=cosyx = \cos y1x1-1 \leq x \leq 10yπ0 \leq y \leq \pi
y=arctanxy = \arctan xx=tanyx = \tan y<x<-\infty < x < \inftyπ2<y<π2-\frac{\pi}{2} < y < \frac{\pi}{2}
y=arccot xy = \text{arccot } xx=cotyx = \cot y<x<-\infty < x < \infty0<y<π0 < y < \pi
arccosx=π2arcsinx\arccos x = \frac{\pi}{2} - \arcsin x arcctgx=π2arctanx\arcctg x = \frac{\pi}{2} - \arctan x

Relaciones entre Funciones Inversas (para x0x \geq 0)

Sección titulada «Relaciones entre Funciones Inversas (para x≥0x \geq 0x≥0)»
FunciónExpresiones Equivalentes
arcsinx\arcsin xarccos1x2=arctanx1x2=arccot 1x2x\arccos \sqrt{1-x^2} = \arctan \frac{x}{\sqrt{1-x^2}} = \text{arccot } \frac{\sqrt{1-x^2}}{x}
arccosx\arccos xarcsin1x2=arctan1x2x=arccot x1x2\arcsin \sqrt{1-x^2} = \arctan \frac{\sqrt{1-x^2}}{x} = \text{arccot } \frac{x}{\sqrt{1-x^2}}
arctanx\arctan xarcsinx1+x2=arccos11+x2=arccot 1x\arcsin \frac{x}{\sqrt{1+x^2}} = \arccos \frac{1}{\sqrt{1+x^2}} = \text{arccot } \frac{1}{x}
arccot x\text{arccot } xarcsin11+x2=arccosx1+x2=arctan1x\arcsin \frac{1}{\sqrt{1+x^2}} = \arccos \frac{x}{\sqrt{1+x^2}} = \arctan \frac{1}{x}
arcsin(x)=arcsinx\arcsin(-x) = -\arcsin x arccos(x)=πarccosx\arccos(-x) = \pi - \arccos x arctan(x)=arctanx\arctan(-x) = -\arctan x arccot(x)=πarccot x\text{arccot}(-x) = \pi - \text{arccot } x arcsina±arcsinb=arcsin(a1b2±b1a2)\arcsin a \pm \arcsin b = \arcsin\left(a\sqrt{1-b^2} \pm b\sqrt{1-a^2}\right) arccosa±arccosb=arccos(ab(1a2)(1b2))\arccos a \pm \arccos b = \arccos\left(ab \mp \sqrt{(1-a^2)(1-b^2)}\right) arctana±arctanb=arctan(a±b1ab)\arctan a \pm \arctan b = \arctan\left(\frac{a \pm b}{1 \mp ab}\right) arcctga±arcctgb=arcctg(ab1b±a)\arcctg a \pm \arcctg b = \arcctg\left(\frac{ab \mp 1}{b \pm a}\right)