Saltearse al contenido

Derivadas de Funciones

FunciónDerivada
y=cxn+Cy = c \cdot x^n + Cy=cnxn1y' = c \cdot n \cdot x^{n-1}
y=u(x)±v(x)y = u(x) \pm v(x)y=u(x)±v(x)y' = u'(x) \pm v'(x)
y=u(x)v(x)y = u(x) \cdot v(x)y=u(x)v(x)+u(x)v(x)y' = u'(x) \cdot v(x) + u(x) \cdot v'(x)
y=u(x)v(x)y = \frac{u(x)}{v(x)}y=u(x)v(x)u(x)v(x)v2(x)y' = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v^2(x)}
y=xy = \sqrt{x}y=12xy' = \frac{1}{2\sqrt{x}}
y=u(x)v(x)y = u(x)^{v(x)}y=uv(x)(u(x)v(x)u(x)+v(x)lnu(x))y' = u^{v}(x) \left( \frac{u'(x) \cdot v(x)}{u(x)} + v'(x) \cdot \ln u(x) \right)
y=f[u(x)]y = f[u(x)] y=f(u)u(x)y' = f'(u) \cdot u'(x) dydx=dydududx\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}
y=f(x),{x=f(t)y=g(t)y = f(x), \quad \begin{cases} x = f(t) \\ y = g(t) \end{cases} y=dydx=dydtdxdt=y˙x˙y' = \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{\dot{y}}{\dot{x}} y=d2ydx2=x˙y¨y˙x¨x˙3y'' = \frac{d^2y}{dx^2} = \frac{\dot{x}\ddot{y} - \dot{y}\ddot{x}}{\dot{x}^3}

Si de la ecuación y=f(x)y = f(x) se despeja xx,resulta la función inversa x=φ(y)x = \varphi(y).

x=φ(y)x = \varphi(y)

Example:

y=f(x)=arccosxgivesx=φ(y)=cosyy = f(x) = \arccos x \quad \text{gives} \quad x = \varphi(y) = \cos y f(x)=1φ(y)y=f(x)f'(x) = \frac{1}{\varphi'(y)} \bigg|_{y = f(x)} f(x)=1siny=11x2f'(x) = \frac{1}{-\sin y} = -\frac{1}{\sqrt{1 - x^2}}
functionderivative
y=exy = e^xy=exy' = e^x, y=y'' = \dots
y=exy = e^{-x}y=exy' = -e^{-x}
y=eaxy = e^{ax}y=aeaxy' = a \cdot e^{ax}
y=xexy = x \cdot e^xy=ex(1+x)y' = e^x \cdot (1 + x)
y=exy = \sqrt{e^x}y=ex2y' = \frac{\sqrt{e^x}}{2}
y=axy = a^xy=axlnay' = a^x \ln a
y=anxy = a^{nx}y=nanxlnay' = n \cdot a^{nx} \ln a
y=ax2y = a^{x^2}y=ax22xlnay' = a^{x^2} \cdot 2x \ln a
functionderivative
y=sinxy = \sin xy=cosxy' = \cos x
y=cosxy = \cos xy=sinxy' = -\sin x
y=tanxy = \tan xy=1cos2x=1+tan2xy' = \frac{1}{\cos^2 x} = 1 + \tan^2 x
y=cotxy = \cot xy=1sin2x=(1+cot2x)y' = \frac{-1}{\sin^2 x} = -(1 + \cot^2 x)
y=asin(kx)y = a \cdot \sin(kx)y=akcos(kx)y' = a \cdot k \cdot \cos(kx)
y=acos(kx)y = a \cdot \cos(kx)y=aksin(kx)y' = -a \cdot k \cdot \sin(kx)
y=sinnxy = \sin^n xy=nsinn1xcosxy' = n \cdot \sin^{n-1} x \cdot \cos x
y=cosnxy = \cos^n xy=ncosn1xsinxy' = -n \cdot \cos^{n-1} x \cdot \sin x
y=tannxy = \tan^n xy=ntann1x(1+tan2x)y' = n \cdot \tan^{n-1} x \cdot (1 + \tan^2 x)
y=cotnxy = \cot^n xy=ncotn1x(1+cot2x)y' = -n \cdot \cot^{n-1} x \cdot (1 + \cot^2 x)
y=1sinxy = \frac{1}{\sin x}y=cosxsin2xy' = \frac{-\cos x}{\sin^2 x}
y=1cosxy = \frac{1}{\cos x}y=sinxcos2xy' = \frac{\sin x}{\cos^2 x}
functionderivative
y=lnxy = \ln xy=1xy' = \frac{1}{x}
y=logaxy = \log_a xy=1xlnay' = \frac{1}{x \cdot \ln a}
y=ln(1±x)y = \ln(1 \pm x)y=±11±xy' = \frac{\pm 1}{1 \pm x}
y=ln(xn)y = \ln(x^n)y=nxy' = \frac{n}{x}
y=ln(x3)y = \ln(\sqrt{x^3})y=12xy' = \frac{1}{2x}

functionderivative
y=sinhxy = \sinh xy=coshxy' = \cosh x
y=coshxy = \cosh xy=sinhxy' = \sinh x
y=tanhxy = \tanh xy=1cosh2xy' = \frac{1}{\cosh^2 x}
y=cothxy = \coth xy=1sinh2xy' = \frac{-1}{\sinh^2 x}

functionderivative
y=arcsinxy = \arcsin xy=11x2y' = \frac{1}{\sqrt{1 - x^2}}
y=arccosxy = \arccos xy=11x2y' = -\frac{1}{\sqrt{1 - x^2}}
y=arctanxy = \arctan xy=11+x2y' = \frac{1}{1 + x^2}
y=arccotxy = \operatorname{arccot} xy=11+x2y' = -\frac{1}{1 + x^2}
y=arcsinhxy = \operatorname{arcsinh} xy=1x2+1y' = \frac{1}{\sqrt{x^2 + 1}}
y=arccoshxy = \operatorname{arccosh} xy=1x21y' = \frac{1}{\sqrt{x^2 - 1}}
y=artanhxy = \operatorname{artanh} xy=11x2y' = \frac{1}{1 - x^2}
y=arcothxy = \operatorname{arcoth} xy=11x2y' = \frac{1}{1 - x^2}