Función | Derivada |
---|
y=c⋅xn+C | y′=c⋅n⋅xn−1 |
y=u(x)±v(x) | y′=u′(x)±v′(x) |
y=u(x)⋅v(x) | y′=u′(x)⋅v(x)+u(x)⋅v′(x) |
y=v(x)u(x) | y′=v2(x)u′(x)⋅v(x)−u(x)⋅v′(x) |
y=x | y′=2x1 |
y=u(x)v(x) | y′=uv(x)(u(x)u′(x)⋅v(x)+v′(x)⋅lnu(x)) |
y=f[u(x)]
y′=f′(u)⋅u′(x)
dxdy=dudy⋅dxdu
y=f(x),{x=f(t)y=g(t)
y′=dxdy=dtdxdtdy=x˙y˙
y′′=dx2d2y=x˙3x˙y¨−y˙x¨
Si de la ecuación y=f(x) se despeja x,resulta la función inversa x=φ(y).
x=φ(y)
Example:
y=f(x)=arccosxgivesx=φ(y)=cosy
f′(x)=φ′(y)1y=f(x)
f′(x)=−siny1=−1−x21
function | derivative |
---|
y=ex | y′=ex, y′′=… |
y=e−x | y′=−e−x |
y=eax | y′=a⋅eax |
y=x⋅ex | y′=ex⋅(1+x) |
y=ex | y′=2ex |
y=ax | y′=axlna |
y=anx | y′=n⋅anxlna |
y=ax2 | y′=ax2⋅2xlna |
function | derivative |
---|
y=sinx | y′=cosx |
y=cosx | y′=−sinx |
y=tanx | y′=cos2x1=1+tan2x |
y=cotx | y′=sin2x−1=−(1+cot2x) |
y=a⋅sin(kx) | y′=a⋅k⋅cos(kx) |
y=a⋅cos(kx) | y′=−a⋅k⋅sin(kx) |
y=sinnx | y′=n⋅sinn−1x⋅cosx |
y=cosnx | y′=−n⋅cosn−1x⋅sinx |
y=tannx | y′=n⋅tann−1x⋅(1+tan2x) |
y=cotnx | y′=−n⋅cotn−1x⋅(1+cot2x) |
y=sinx1 | y′=sin2x−cosx |
y=cosx1 | y′=cos2xsinx |
function | derivative |
---|
y=lnx | y′=x1 |
y=logax | y′=x⋅lna1 |
y=ln(1±x) | y′=1±x±1 |
y=ln(xn) | y′=xn |
y=ln(x3) | y′=2x1 |
function | derivative |
---|
y=sinhx | y′=coshx |
y=coshx | y′=sinhx |
y=tanhx | y′=cosh2x1 |
y=cothx | y′=sinh2x−1 |
function | derivative |
---|
y=arcsinx | y′=1−x21 |
y=arccosx | y′=−1−x21 |
y=arctanx | y′=1+x21 |
y=arccotx | y′=−1+x21 |
y=arcsinhx | y′=x2+11 |
y=arccoshx | y′=x2−11 |
y=artanhx | y′=1−x21 |
y=arcothx | y′=1−x21 |