Saltearse al contenido

Teoría de Exponentes

an={asi n=1aaan vecessi nN,n2\boxed{ a^n = \begin{cases} a & \text{si } n = 1 \\ \underbrace{a \cdot a \cdot \ldots \cdot a}_{n \text{ veces}} & \text{si } n \in \mathbb{N}, n \geq 2 \end{cases} } a0=1aR{0}a^0 = 1 \quad \forall a \in \mathbb{R} \setminus \{0\} an=1anaR{0},nNa^{-n} = \frac{1}{a^n} \quad \forall a \in \mathbb{R} \setminus \{0\}, n \in \mathbb{N} am/n=amn=(an)mnN,n2a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m \quad \forall n \in \mathbb{N}, n \geq 2 P=andonde: aR,nN,PRP = a^n \quad \text{donde: } a \in \mathbb{R}, n \in \mathbb{N}, P \in \mathbb{R}
  • aa: base
  • nn: exponente natural
  • PP: potencia
  1. Producto de bases iguales:
xmxn=xm+nxR,m,nNx^m \cdot x^n = x^{m+n} \quad x \in \mathbb{R}, m, n \in \mathbb{N}
  1. Exponente de exponente:
(xm)n=xmnxR,m,nN(x^m)^n = x^{m \cdot n} \quad x \in \mathbb{R}, m, n \in \mathbb{N} (((am)n)r)s=amnrs\left(((a^m)^n)^r\right)^s = a^{m \cdot n \cdot r \cdot s}
  1. Exponente de un producto:
(ab)n=anbna,bR,nN(a \cdot b)^n = a^n \cdot b^n \quad a, b \in \mathbb{R}, n \in \mathbb{N} (xayb)n=xanybn(x^a \cdot y^b)^n = x^{a \cdot n} \cdot y^{b \cdot n}
  1. División de bases iguales:
aman=amnm,nN,mn,aR{0}\frac{a^m}{a^n} = a^{m-n} \quad m, n \in \mathbb{N}, m \geq n, a \in \mathbb{R} \setminus \{0\}
  1. Exponente de un cociente:
(ab)n=anbnnN,bR{0}\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n} \quad n \in \mathbb{N}, b \in \mathbb{R} \setminus \{0\}
  1. Exponente negativo de una fracción:
(ab)n=(ba)n=bnana,b0\left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n = \frac{b^n}{a^n} \quad a, b \neq 0 y=xn    yn=xnN,n2y = \sqrt[n]{x} \iff y^n = x \quad n \in \mathbb{N}, n \geq 2
  1. Raíz de un producto:
abn=anbn\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}

Si nn es par, entonces a0a \geq 0 y b0b \geq 0.

  1. Raíz de un cociente:
abn=anbnb0\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \quad b \neq 0

Si nn es par, entonces a0a \geq 0 y b>0b > 0.

  1. Raíz de raíz:
anm=amnm,nN\sqrt[m]{\sqrt[n]{a}} = \sqrt[m \cdot n]{a} \quad m, n \in \mathbb{N}

Si mnm \cdot n es par, entonces a0a \geq 0.

arsnm=amnsr\sqrt[m]{\sqrt[n]{\sqrt[s]{\sqrt[r]{a}}}} = \sqrt[m \cdot n \cdot s \cdot r]{a}
  1. Raíz de una potencia:
(an)m=amn\left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m} xacab=xcbSi ab es par, entonces xR0+\sqrt[ab]{x^{ac}} = \sqrt[b]{x^c} \quad \text{Si } ab \text{ es par, entonces } x \in \mathbb{R}_0^+ abcpmn=anbnmcnmp\sqrt[n]{a \cdot \sqrt[m]{b \cdot \sqrt[p]{c}}} = \sqrt[n]{a} \cdot \sqrt[n \cdot m]{b} \cdot \sqrt[n \cdot m \cdot p]{c}
  1. Igualdad de bases:
am=an    m=n(a0,1)a^m = a^n \implies m = n \quad (a \neq 0, 1)
  1. Igualdad de exponentes:
am=bm    a=b(m0)a^m = b^m \implies a = b \quad (m \neq 0)
  1. Caso especial:
ax=xa    a=x(x0)a^x = x^a \implies a = x \quad (x \neq 0)
  1. Forma exponencial:
xx=an    x=ax^x = a^n \implies x = a
  1. Forma radical:
xx=n    x=nxx^x = n \implies x = \sqrt[x]{n}