Skip to content

Notable Products

alt text

(a±b)2=a2±2ab+b2(a \pm b)^2 = a^2 \pm 2ab + b^2

Important:

(ab)2=(ba)2(a - b)^2 = (b - a)^2

alt text

a2b2=(a+b)(ab)a^2 - b^2 = (a + b)(a - b)
a3+b3=(a+b)(a2ab+b2)a^3 + b^3 = (a + b)(a^2 - ab + b^2) a3b3=(ab)(a2+ab+b2)a^3 - b^3 = (a - b)(a^2 + ab + b^2)

alt text

(a+b+c)2=a2+b2+c2+2ab+2ac+2bc(a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc

Also:

(a+bc)2=a2+b2+c2+2ab2ac2bc(a + b - c)^2 = a^2 + b^2 + c^2 + 2ab - 2ac - 2bc (ab+c)2=a2+b2+c22ab+2ac2bc(a - b + c)^2 = a^2 + b^2 + c^2 - 2ab + 2ac - 2bc (abc)2=a2+b2+c22ab2ac+2bc(a - b - c)^2 = a^2 + b^2 + c^2 - 2ab - 2ac + 2bc (abc)2=((b+ca))2=(b+ca)2(a - b - c)^2 = \left( -(b + c - a) \right)^2 = (b + c - a)^2
(a+b)3=a3+3a2b+3ab2+b3(a + b)^3 = a^3 + 3a^2b + 3ab^2 + b^3 (ab)3=a33a2b+3ab2b3(a - b)^3 = a^3 - 3a^2b + 3ab^2 - b^3

Also:

(a+b)3=a3+b3+3ab(a+b)(a + b)^3 = a^3 + b^3 + 3ab(a + b) (ab)3=a3b33ab(ab)(a - b)^3 = a^3 - b^3 - 3ab(a - b)
(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)(a + b + c)^3 = a^3 + b^3 + c^3 + 3(a + b)(b + c)(c + a)

Another form:

(a+b+c)3=a3+b3+c3+3a2(b+c)+3b2(a+c)+3c2(a+b)+6abc(a + b + c)^3 = a^3 + b^3 + c^3 + 3a^2(b + c) + 3b^2(a + c) + 3c^2(a + b) + 6abc

Also:

(a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a)3abc(a + b + c)^3 = a^3 + b^3 + c^3 + 3(a + b)(b + c)(c + a) - 3abc
(x+a)(x+b)=x2+(a+b)x+ab(x + a)(x + b) = x^2 + (a + b)x + ab (x+a)(x+b)(x+c)=x3+(a+b+c)x2+(ab+bc+ac)x+abc(x + a)(x + b)(x + c) = x^3 + (a + b + c)x^2 + (ab + bc + ac)x + abc
(a+b)2+(ab)2=2(a2+b2)(a + b)^2 + (a - b)^2 = 2(a^2 + b^2) (a+b)2(ab)2=4ab(a + b)^2 - (a - b)^2 = 4ab (a+b)3+(ab)3=2a(a2+3b2)(a + b)^3 + (a - b)^3 = 2a(a^2 + 3b^2) (a+b)3(ab)3=2b(3a2+b2)(a + b)^3 - (a - b)^3 = 2b(3a^2 + b^2) (a+b)4(ab)4=8ab(a2+b2)(a + b)^4 - (a - b)^4 = 8ab(a^2 + b^2)
(x2+x+1)(x2x+1)=x4+x2+1(x^2 + x + 1)(x^2 - x + 1) = x^4 + x^2 + 1 (x2+xy+y2)(x2xy+y2)=x4+x2y2+y4(x^2 + xy + y^2)(x^2 - xy + y^2) = x^4 + x^2y^2 + y^4

In General:

(x2m+xmyn+y2n)(x2mxmyn+y2n)=x4m+x2my2n+y4n(x^{2m} + x^m y^n + y^{2n})(x^{2m} - x^m y^n + y^{2n}) = x^{4m} + x^{2m}y^{2n} + y^{4n} (a2+b2)(x2+y2)=(ax+by)2+(aybx)2\left(a^2 + b^2\right)\left(x^2 + y^2\right) = (ax + by)^2 + (ay - bx)^2 (a2+b2+c2)(x2+y2+z2)=(ax+by+cz)2+(aybx)2+(azcx)2\left(a^2 + b^2 + c^2\right)\left(x^2 + y^2 + z^2\right) = (ax + by + cz)^2 + (ay - bx)^2 + (az - cx)^2
a3+b3+c33abc=(a+b+c)(a2+b2+c2abacbc)a^3 + b^3 + c^3 - 3abc = (a + b + c)(a^2 + b^2 + c^2 - ab - ac - bc) a3+b3+c3=12(a+b+c)[(ab)2+(ac)2+(bc)2]a^3 + b^3 + c^3 = \frac{1}{2}(a + b + c)\left[(a - b)^2 + (a - c)^2 + (b - c)^2\right] a2+b2+c2abacbc=12[(ab)2+(ac)2+(bc)2]a^2 + b^2 + c^2 - ab - ac - bc = \frac{1}{2}\left[(a - b)^2 + (a - c)^2 + (b - c)^2\right] (a+b+c)3a3b3c3=3(a+b)(b+c)(c+a)(a + b + c)^3 - a^3 - b^3 - c^3 = 3(a + b)(b + c)(c + a) (a+b)(b+c)(a+c)+abc=(a+b+c)(ab+ac+bc)(a + b)(b + c)(a + c) + abc = (a + b + c)(ab + ac + bc) (ab)2+(bc)2+(ac)2=(a2+b2+c2)2(ab+ac+bc)(a - b)^2 + (b - c)^2 + (a - c)^2 = (a^2 + b^2 + c^2) - 2(ab + ac + bc)
  • If a+b+c=0a + b + c = 0, then:
a2+b2+c2=2(ab+ac+bc)a^2 + b^2 + c^2 = -2(ab + ac + bc) a3+b3+c3=3abca^3 + b^3 + c^3 = 3abc a4+b4+c4=2(a2b2+a2c2+b2c2)a^4 + b^4 + c^4 = 2\left(a^2b^2 + a^2c^2 + b^2c^2\right) a5+b5+c5=5abc(ab+ac+bc)a^5 + b^5 + c^5 = -5abc(ab + ac + bc) (ab+ac+bc)2=a2b2+a2c2+b2c2(ab + ac + bc)^2 = a^2b^2 + a^2c^2 + b^2c^2
  • If ab+ba=2\frac{a}{b} + \frac{b}{a} = 2, then:
a=ba = b
  • If a2+b2+c2=ab+ac+bca^2 + b^2 + c^2 = ab + ac + bc, then:
a=b=ca = b = c
  • If a3+b3+c3=3abca^3 + b^3 + c^3 = 3abc and a+b+c=0a + b + c = 0, then:
a=b=c=0a = b = c = 0
  • If a2+b2+c2++z2=0a^2 + b^2 + c^2 + \dots + z^2 = 0, then:
a=b=c==z=0a = b = c = \dots = z = 0
  • If an+bn++zn=0\sqrt[n]{a} + \sqrt[n]{b} + \dots + \sqrt[n]{z} = 0, then:
a=b==z=0a = b = \dots = z = 0
  • If x+x1=ax + x^{-1} = a, then:
x2+x2=a22x^2 + x^{-2} = a^2 - 2 x3+x3=a33ax^3 + x^{-3} = a^3 - 3a x4+x4=(a22)22x^4 + x^{-4} = (a^2 - 2)^2 - 2